Files
clock4/mk4-bootloader/Core/Src/main.c
2025-08-03 12:21:24 +01:00

805 lines
24 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "qspi_drv.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
QSPI_HandleTypeDef hqspi;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim4;
DMA_HandleTypeDef hdma_tim1_up;
DMA_HandleTypeDef hdma_tim4_up;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CRC_Init(void);
static void MX_QUADSPI_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define byteswap32(x) \
( ((x & 0xff000000) >> 24) | ((x & 0x00ff0000) >> 8) \
| ((x & 0x0000ff00) << 8) | ((x & 0x000000ff) << 24))
struct {
uint8_t low;
uint8_t high;
} buffer_c[80] = {0};
uint16_t buffer_b[80] = {0};
uint8_t animationPeriod = 2;
char animationFrame=99;
#define startAnimation() animationFrame=0
#define stopAnimation() animationFrame=99
// This method of passing variables from the linker script assumes everything is an address.
// boot size is obviously not an address, but this still works, so whatever.
extern uint32_t _boot_size[];
extern uint32_t _app_start[];
extern uint32_t _app_size[];
#define BOOT_SIZE (int)_boot_size
#define APP_SIZE (int)_app_size
void setDisplayPWM(uint32_t bright){
HAL_DMA_Abort(&hdma_tim1_up);
HAL_DMA_Abort(&hdma_tim4_up);
HAL_DMA_Start(&hdma_tim1_up, (uint32_t)buffer_b, (uint32_t)&GPIOB->ODR, bright);
HAL_DMA_Start(&hdma_tim4_up, (uint32_t)buffer_c, (uint32_t)&GPIOC->ODR, bright);
}
volatile uint8_t ejected_state = 0;
void hang_error(uint16_t errno){
MX_USB_DEVICE_Init();
stopAnimation();
setDisplayPWM(5);
buffer_b[0] = bCat0 | 0b0111110000; //b
buffer_b[1] = bCat1 | errno;
buffer_b[4] = bCat4 | 0b0111100100; //E
buffer_c[0].low=0b01010000; //r
buffer_c[1].low=0b01010000; //r
buffer_c[2].low=0b01011100; //o
buffer_c[3].low=0b01010000; //r
HAL_FLASH_Lock();
while(1){
if (ejected_state>1) NVIC_SystemReset();
}
}
// Get the CRC of the firmware file on FATFS
// If the CRC is wrong, immediately throw an error.
// The firmware file is padded to a fixed length, we don't need to worry about lengths not divisible by 4.
uint32_t f_crc(FIL* fp)
{
#define READ_BLOCK_SIZE (4096*2)
unsigned int rc;
char buf[READ_BLOCK_SIZE];
uint32_t result;
if ((fp)->fptr !=0) // pointless but just in case
f_rewind(fp);
if ((fp)->obj.objsize != APP_SIZE)
hang_error(ERR_FS_IMG_CRC_INVALID);
hcrc.State = HAL_CRC_STATE_BUSY;
__HAL_CRC_DR_RESET(&hcrc);
while ((fp)->fptr < APP_SIZE -READ_BLOCK_SIZE && !fp->err) {
f_read(fp, &buf, READ_BLOCK_SIZE, &rc);
for (int j=0; j<READ_BLOCK_SIZE; j+=4)
hcrc.Instance->DR = buf[j+3] | (buf[j+2]<<8) | (buf[j+1]<<16) | (buf[j]<<24);
}
f_read(fp, &buf, READ_BLOCK_SIZE-4, &rc);
for (int j=0; j<READ_BLOCK_SIZE-4; j+=4)
hcrc.Instance->DR = buf[j+3] | (buf[j+2]<<8) | (buf[j+1]<<16) | (buf[j]<<24);
result = ~(hcrc.Instance->DR);
hcrc.State = HAL_CRC_STATE_READY;
f_read(fp, &buf, 4, &rc);
if (fp->err || result != (buf[3] | (buf[2]<<8) | (buf[1]<<16) | (buf[0]<<24)) )
hang_error(ERR_FS_IMG_CRC_INVALID);
return result;
#undef READ_BLOCK_SIZE
}
// Get CRC of loaded image
uint32_t app_crc()
{
uint32_t * buf = _app_start;
hcrc.State = HAL_CRC_STATE_BUSY;
__HAL_CRC_DR_RESET(&hcrc);
int j;
uint32_t t;
for (j=0; j<(APP_SIZE/4)-1; j++) {
t = byteswap32(buf[j]);
hcrc.Instance->DR = t;
}
uint32_t result = ~(hcrc.Instance->DR);
hcrc.State = HAL_CRC_STATE_READY;
return result;
}
void __attribute__((naked,noreturn)) launch_app(){
HAL_RCC_DeInit();
HAL_DeInit();
SysTick->CTRL = 0;
SysTick->LOAD = 0;
SysTick->VAL = 0;
SCB->VTOR = _app_start[0];
__DSB();
__ISB();
// 1st entry in the vector table is stack pointer
// 2nd entry in the vector table is the application entry point
__set_MSP(_app_start[0]);
((void (*)(void)) _app_start[1])();
__builtin_unreachable();
}
void progressBar(uint32_t addr){
#define CHUNK ( APP_SIZE / (9*16))
static uint32_t threshold = ((uint32_t)_app_start);
static char progress = 0;
if (addr>threshold) {
switch ((++progress) & 0xF0){
case 0x00: buffer_b[0 + 5*(progress & 0x0F)] = bCat0 | 0b0100000000; break;
case 0x10: buffer_b[1 + 5*(progress & 0x0F)] = bCat1 | 0b0100000000; break;
case 0x20: buffer_b[2 + 5*(progress & 0x0F)] = bCat2 | 0b0100000000; break;
case 0x30: buffer_b[3 + 5*(progress & 0x0F)] = bCat3 | 0b0100000000; break;
case 0x40: buffer_b[4 + 5*(progress & 0x0F)] = bCat4 | 0b0100000000; break;
case 0x50: buffer_c[0 + 5*(progress & 0x0F)].low = 0b01000000 ; break;
case 0x60: buffer_c[1 + 5*(progress & 0x0F)].low = 0b01000000 ; break;
case 0x70: buffer_c[2 + 5*(progress & 0x0F)].low = 0b01000000 ; break;
case 0x80: buffer_c[3 + 5*(progress & 0x0F)].low = 0b01000000 ; break;
}
threshold += CHUNK;
}
#undef CHUNK
}
void doAnimation(){
switch (animationFrame++){
case 0: buffer_b[0] = bCat0 | 0b0000110000; buffer_b[1] = bCat1 | 0b0000000000; break;
case 1: buffer_b[0] = bCat0 | 0b0001100000; buffer_b[1] = bCat1 | 0b0000000000; break;
case 2: buffer_b[0] = bCat0 | 0b0011000000; buffer_b[1] = bCat1 | 0b0000000000; break;
case 3: buffer_b[0] = bCat0 | 0b0010000100; buffer_b[1] = bCat1 | 0b0000000000; break;
case 4: buffer_b[0] = bCat0 | 0b0000001100; buffer_b[1] = bCat1 | 0b0000000000; break;
case 5: buffer_b[0] = bCat0 | 0b0000001000; buffer_b[1] = bCat1 | 0b0001000000; break;
case 6: buffer_b[0] = bCat0 | 0b0000000000; buffer_b[1] = bCat1 | 0b0001100000; break;
case 7: buffer_b[0] = bCat0 | 0b0000000000; buffer_b[1] = bCat1 | 0b0000110000; break;
case 8: buffer_b[0] = bCat0 | 0b0000000000; buffer_b[1] = bCat1 | 0b0000011000; break;
case 9: buffer_b[0] = bCat0 | 0b0000000000; buffer_b[1] = bCat1 | 0b0000001100; break;
case 10: buffer_b[0] = bCat0 | 0b0000000000; buffer_b[1] = bCat1 | 0b0010000100; break;
case 11: buffer_b[0] = bCat0 | 0b0000010000; buffer_b[1] = bCat1 | 0b0010000000; animationFrame=0; break;
case 99: animationFrame=99; // disable animation
}
}
void flash_erase(){
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
FLASH_EraseInitTypeDef EraseInitStruct;
uint32_t PAGEError = 0;
// Bank size / flash size are not constants, they're read from the chip
// on STM32L476RCT6, flash is 256K and bank size is 128K
// on STM32L476RGT6, flash is 1MB and bank size is 512K
#define FLASH_PAGES_PER_BANK (FLASH_BANK_SIZE / FLASH_PAGE_SIZE)
#define APP_START_PAGE (((int)_app_start - FLASH_BASE) / FLASH_PAGE_SIZE )
// Erase from app start up to end of bank 1
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.Banks = FLASH_BANK_1;
EraseInitStruct.Page = APP_START_PAGE;
if (FLASH_BANK_SIZE > BOOT_SIZE + APP_SIZE)
EraseInitStruct.NbPages = (BOOT_SIZE + APP_SIZE)/FLASH_PAGE_SIZE - APP_START_PAGE;
else
EraseInitStruct.NbPages = FLASH_PAGES_PER_BANK - APP_START_PAGE;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &PAGEError) != HAL_OK)
hang_error(ERR_ERASE_FAILED);
if (FLASH_BANK_SIZE > BOOT_SIZE + APP_SIZE) return;
animationPeriod = 50;
// Erase bank 2
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.Banks = FLASH_BANK_2;
EraseInitStruct.Page = 0;
EraseInitStruct.NbPages = (BOOT_SIZE + APP_SIZE - FLASH_BANK_SIZE)/FLASH_PAGE_SIZE;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &PAGEError) != HAL_OK)
hang_error(ERR_ERASE_FAILED);
}
void flash_write(FIL* fp){
uint32_t addr = (uint32_t)_app_start;
unsigned int rc;
char buf[8];
if ((fp)->fptr !=0)
f_rewind(fp);
while (addr < FLASH_BASE + BOOT_SIZE + APP_SIZE){
f_read(fp, &buf, 8, &rc);
uint32_t low = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | (buf[0]);
uint32_t high= (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | (buf[4]);
uint64_t data = ((uint64_t)high << 32) | low;
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, addr, data ) == HAL_OK) {
if (*(uint64_t*)addr != data) hang_error(ERR_WRITE_INVALID);
addr += 8;
} else hang_error(ERR_WRITE_FAILED);
progressBar(addr);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_CRC_Init();
MX_QUADSPI_Init();
MX_TIM1_Init();
MX_TIM4_Init();
MX_FATFS_Init();
//MX_USB_DEVICE_Init();
/* USER CODE BEGIN 2 */
buffer_c[0].high=0b11001110;
buffer_c[1].high=0b11001101;
buffer_c[2].high=0b11001011;
buffer_c[3].high=0b11000111;
buffer_c[4].high=0b11001111;
// buffer_c[0].low=0b01011100; //o
// buffer_c[1].low=0b01011100; //o
// buffer_c[2].low=0b01111000; //t
// buffer_c[3].low=0;
// buffer_c[4].low=0;
//
// buffer_b[0] = 0;//bCat0 | bSegDecode1;
// buffer_b[1] = 0;//bCat1 | bSegDecode2;
// buffer_b[2] = 0;//bCat2 | bSegDecode3;
// buffer_b[3] = 0;//bCat3 | bSegDecode4;
// buffer_b[4] = bCat4 | 0b0111110000; //b
if (HAL_DMA_Start(&hdma_tim1_up, (uint32_t)buffer_c, (uint32_t)&GPIOC->ODR, 5) != HAL_OK)
Error_Handler();
if (HAL_DMA_Start(&hdma_tim4_up, (uint32_t)buffer_b, (uint32_t)&GPIOB->ODR, 5) != HAL_OK)
Error_Handler();
__HAL_TIM_ENABLE_DMA(&htim1, TIM_DMA_UPDATE);
__HAL_TIM_ENABLE(&htim1);
__HAL_TIM_ENABLE_DMA(&htim4, TIM_DMA_UPDATE);
__HAL_TIM_ENABLE(&htim4);
_Bool new_fw_present;
uint32_t new_fw_crc =0;
// Calculate CRC of loaded image
uint32_t loaded_fw_crc = app_crc();
// Look for new firmware file and calculate its crc
FIL file;
if (f_open(&file, "/FWT.BIN", FA_READ) != FR_OK)
new_fw_present = 0;
else {
new_fw_present = 1;
new_fw_crc = f_crc(&file);
}
// debug force reload
// new_fw_crc=0;
// Hinge TX connection shorted to ground - force bootloader to hang
if ((GPIOA->IDR & (1<<2))==0) {
hang_error(ERR_USER);
}
if (loaded_fw_crc == byteswap32(*(uint32_t*)(FLASH_BASE + BOOT_SIZE + APP_SIZE -4)) ) { // loaded firmware valid
if (!new_fw_present) launch_app();
if (loaded_fw_crc == new_fw_crc) launch_app();
} else { // loaded firmware invalid
if (!new_fw_present) hang_error(ERR_INVALID_NO_FW);
}
startAnimation();
HAL_FLASH_Unlock();
flash_erase();
stopAnimation();
buffer_b[0] = 0;
buffer_b[1] = 0;
// Set up display for fading individual segments
for (uint8_t i=0;i<80;i+=5) {
buffer_c[0 + i].high=0b11001110;
buffer_c[1 + i].high=0b11001101;
buffer_c[2 + i].high=0b11001011;
buffer_c[3 + i].high=0b11000111;
buffer_c[4 + i].high=0b11001111;
}
setDisplayPWM(80);
flash_write(&file);
HAL_FLASH_Lock();
//launch_app();
NVIC_SystemReset();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE|RCC_OSCILLATORTYPE_LSE
|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 2;
RCC_OscInitStruct.PLL.PLLN = 64;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_MSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Enable MSI Auto calibration
*/
HAL_RCCEx_EnableMSIPLLMode();
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_WORDS;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief QUADSPI Initialization Function
* @param None
* @retval None
*/
static void MX_QUADSPI_Init(void)
{
/* USER CODE BEGIN QUADSPI_Init 0 */
/* USER CODE END QUADSPI_Init 0 */
/* USER CODE BEGIN QUADSPI_Init 1 */
/* USER CODE END QUADSPI_Init 1 */
/* QUADSPI parameter configuration*/
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 0;
hqspi.Init.FifoThreshold = 1;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_HALFCYCLE;
hqspi.Init.FlashSize = 23;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_1_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN QUADSPI_Init 2 */
/* USER CODE END QUADSPI_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 256;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 256;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_SET);
/*Configure GPIO pin : PA0 PA1 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2
|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9, GPIO_PIN_RESET);
/*Configure GPIO pins : PC13 PC0 PC1 PC2
PC3 PC4 PC5 PC6
PC8 PC9 PC10 PC11
PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2
|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PB2 PB12 PB13 PB14
PB15 PB3 PB4 PB5
PB6 PB7 PB8 PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
hang_error(ERR_UNKNOWN);
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/